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Inferix: Decentralized GPU Network with Proof of
Rendering

Inferix Labs 2024, version 1.1

Abstract—This paper introduces Proof-of-Rendering (PoR)
and its application in building Inferix’s decentralized GPU
network. Addressing DePIN Verification, the key challenge facing
developers of decentralized physical infrastructure networks (De-
PIN) recently, Inferix has developed the Active Noise Generation
and Verification or Proof of Rendering algorithm. The algorithm
is combined with a software layer that includes middleware and
client SDK, facilitating connections between 3D creative data
systems and the decentralized GPU infrastructure. This creates
a unique Decentralized GPU Network for Visual Computing and
Federated AI.

Index Terms—Proof-of-Rendering, PoR, Active Noise Gen-
eration, Active Noise Verification, FHE, 3D/VR Rendering,
Federated AI, Burn-Mint-Work, IBME, Decentralization, GPU
Compute.

I. INTRODUCTION

Inferix is a DePIN network of GPUs for visual computing
and AI, it is built to bridge the needs of users and hardware
owners. Its solution meets real-world problems across a range
of industries, not only for the AI field but also for high-quality
graphics rendering. Users (e.g. 3D graphics artists, game
developers, enterprises) who need GPU computing power for
rendering high-quality graphics can use the Inferix system
to continuously access these precious resources with faster
processing time and more efficient spending. Owners of GPUs
can share idle resources to the Inferix network and earn long-
term passive income while simultaneously balancing their
main jobs or leisure activities.

At high-level, Inferix network is naturally a dynamic system
where demands of digital content creators and supplies of
GPU owners are created continuously over time. Users are
concerned with the security and privacy of the system, with
the facility of accessing computing resources, as well as with
the price that they have to pay for their demands.

This section first describes the high-level flow of a decen-
tralized rendering network. Next, we describe one of the main
challenges that we have to deal with, that is the authenticity of
rendering. Section II presents the main idea of the proposed
solution then introduces a mathematical model for the Active
Noise Generation and Verification algorithm. Section III de-
scribes an implementation for the algorithm and its integration
into the existing layers of the Inferix network. Section IV
presents the main components in the system architecture of the
Inferix decentralized GPU network. In section V, we discuss
how to use this network infrastructure for the AI training and
inference, then Inferix is actually a GPU network for visual
computing and federated AI. In section VI, we present the
token economy model of Inferix with a novel algorithm called

Burn-Mint-Work for the token issuance problem. Finally, sec-
tion VII is reserved for ongoing developments in improving
the robustness, performance and availability of the network.

A. Rendering network using crowdsourced GPU

The graphics rendering service consists in a network of
decentralized machines called nodes which are of 3 kinds:
manager, worker and verifier. The managers are dedicated
machines of Inferix while verifiers and workers are machines
joined by GPU owners. The number of workers is normally
much larger than the number of managers and verifiers. A
typical rendering session contains several steps as shown
in fig. 1 and explained below:

1) A user creates a rendering job request using the Inferix’s
plugin for client, this job uploads user’s scene data to
some manager.

2) The rendering task controller of the manager receives
the rendering job request, then

• splits it into multiple rendering tasks, each task
consists of the scene data and several parameters:
range of frames to be rendered, output format, etc.

• generates corresponding verification keys and sends
these keys to the verifying task controller.

The rendering tasks will be assigned to workers and
the verification keys will be sent to the verifying task
controller.

3) Receiving a rendering task, a worker renders the in-
cluded scene using the parameters given by the task.
When it finishes, it saves the rendered frames to a
decentralized storage, then notifies the manager by a
message containing a unique URL to the result.

4) The verifying task controller of the notified manager
receives the notification then creates a verification task,
this task will be assigned to a verifier.

5) Receiving a verification task, a verifier
• checks the authenticity of the corresponding ren-

dered frames, then
• notifies the manager about the verification result.

6) If the rendered frames pass the verification, then the
manager notifies the user by a message containing the
URL to the rendered frames. Otherwise, these frames
are rejected.

7) The user downloads the frames from the storage and
manually confirms whether they meet the expectation,
if they do not then the user sends a bad result claim to
the manager.

The managers synchronize a database of rendering and ver-
ification tasks. That makes the rendering service being both
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Figure 1: Rendering flow

logically and physically decentralized: a graphics scene can
be simultaneously rendered by different workers and later
checked by different verifiers, the machines of workers and
verifiers can be also located at different geographical locations.

B. Rendering verification problem

A user submits some graphics work to a manager (cf. fig. 1),
this work consists of several scenes; each contains information
about graphical objects, the camera, light sources and ma-
terials. The photorealistic rendering consists of sophisticated
computation processes that calculate light properties at sur-
faces of all visible objects, resulting in 3D rendered images
of the scene [1].

One of the most important problems that Inferix has to solve
is to verify the authenticity of rendered results [2], [3], [4].
That means how to ensure that once a user submits a valid
scene, then after waiting for an amount of time, the user
will receive authentically rendered images. The authenticity
can be defined informally as if the result received from the
rendering network and the result received when the scene
is genuinely rendered by a rendering software are human
perceptually indistinguishable.

The workers who joined the rendering network are mostly
workstations of GPU owners who want to make profit from
their unused computational resources. Respecting the privacy
of GPU owners and their resources, besides lightweight open
source software installed to manage the communication with
the network, there is completely no control on workers.

Consequently, there is no constraint to oblige workers to
render the graphics scene correctly. Indeed, a malicious worker
may receive a rendering task, but does nothing then uses some
forged images as results. Without rendering the scene, the
managers and users know only superficial features of what the
rendered images look like. Obviously, the managers and users
have no interest in rendering the scene themselves since if they
can do that, there is no need to rely on workers. Moreover, we

cannot deploy any surveillance mechanism on the machines of
workers due to privacy reasons. Even if we try to do that, this
is only a matter of time before a worker reverse engineers the
mechanism and eventually bypasses it. The situation doesn’t
seem to favor us: checking the authenticity of something while
only having a little knowledge about it, otherwise the attacker
has complete information.

Naturally, a public-key cryptography approach is using a
scheme of fully homomorphic encryption (FHE) [5], [6]. The
scene is encrypted first by a private key before sending it to
workers. Given the corresponding evaluation key, the homo-
morphic encryption software performs the graphics rendering
on the encrypted scene without needing to decrypt it. Finally,
the encrypted rendered results are returned and decrypted
at the user’s side using the private key. The advantage of
FHE is that the workers, even being able to modify the FHE
software on their side, cannot interfere with the FHE rendering
processes or forge the rendering results without being detected.
Unfortunately, this approach is impractical since all state-of-
the-art implementations will make the performance of the
homomorphic encryption rendering become unacceptable [7].

II. HIGH-LEVEL DESCRIPTION OF ANGV

To handle this problem, we follow the approach of digital
watermarking [8], [9] and propose a scheme called Active
Noise Generation and Verification (ANGV) which is a vari-
ant of proof of ownership [2], [3]. Our scheme has several
favorable properties:

• Efficiency: noise generation and verification require much
lower computational resources compared with the graph-
ics rendering; the total performance of the system is not
affected.

• Fidelity: the scheme needs to modify the initial scene so
the rendered output will be distorted, but the distortion is
human perception subthreshold.
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• Robustness: the embedded noises are robust under ren-
dering enhancements and post-processing operations (e.g.
denoising, anti-aliasing).

• Effectiveness: there is no need to use special rendering
software as in the case of FHE.

• Security: without knowing the verification key, attackers
need the same computational cost with the rendering to
bypass the authenticity verification.

In current digital watermarking schemes for authentication
and ownership verification [2], [3], [4], [10], invisible wa-
termarks will be embedded into the digital content needed
to be protected. The detector (or verifier) tries to extract the
watermark from a tested content, then compares the extracted
watermark with the original embedded one, if the comparison
is passed then the content is authenticated.

However, in the context of Inferix’s rendering network,
the manager has access to the image only after the graphics
scene has been rendered by workers. It is nonsense to embed
watermark into the image at this point since the watermarking
cannot help to detect any malicious manipulations which may
happen before that, i.e. in the rendering process. Our approach
is to embed watermarks into the graphics scene submitted
by users before sending it to workers. The Active Noise
Generation and Verification scheme consists of two algorithms
as described below.

A. Noise generation

In practice, a scene may contain multiple frames, each task
of this scene contains some range of frames to be rendered,
consequently each worker may render only a subset of these
frames. For the simplification purpose, we assume in this
section that a scene has only one frame, so the output image
is determined uniquely by the scene.

noise embedded scenenoise embedding
graphics scene

noise parameters

graphics rendering noise embedded result

verification key

job id

Figure 2: Noise generation

Let R denote the rendering process, for each input scene
𝐺, the result of the rendering is an image:

𝐼 = R (𝐺) (1)

It is important to note that 𝐼 is actually never computed,
neither by the manager in the noise embedding (see also the
discussion about sampling frames in section III-C) nor by
workers in the frame rendering. The equation above represents
only equality.

Similar with invisible watermark schemes in the litera-
ture [2], [3], [10], a noise 𝑊 consists in a random vector of
atomic watermarks:

𝑊 ≜ (𝑤1, . . . , 𝑤𝑛) (2)

where 𝑤𝑖 (1 ≤ 𝑖 ≤ 𝑛) is independently chosen from some
normal probability distribution N

(
𝜇, 𝜎2) . Furthermore, 𝑤𝑖 has

a special structure depending on where it is introduced in the
scene 𝐺. The number 𝑛 of atomic watermark signals is chosen
around an experimental trade-off between human perception
threshold about the image distortion and the false positive ratio
of the noise verification.

Using a uniformly generated task identification number 𝐽id,
we calculate a verification key which is a vector of the same
size as the noise vector 𝑊 :

𝐾verif (𝑆,𝑊, 𝐽id) ≜ (𝑘1, . . . , 𝑘𝑛) (3)

that will be used later for the noise verification.
We have discussed that embedding watermarks into 𝐼 cannot

help the authentication, then the noise 𝑊 is not embedded into
the image 𝐼 but into the scene 𝐺 (c.f. fig. 2). Let E denote
the embedding function, we now create a watermarked scene:

�̂� = E (𝐺,𝑊) (4)

Finally �̂� is sent to workers for rendering, that results in a
rendered image:

𝐼 = R(�̂�) (5)

If got accepted, namely 𝐼 passes the noise verification which
will be presented hereafter, this is the image sent back to the
user (recall that 𝐼 in eq. (1) is not computed). The encoding
function E and the noise 𝑊 are designed so that the distortion
of 𝐼 against 𝐼 is imperceptible [11], [12], then 𝐼 can be
authentically used as a result of the graphics rendering.

B. Noise verification

Different from proof of ownership schemes [2], [3], the
verification of watermark requires a key. Given an image 𝐽 and
a verification key 𝐾repr (c.f. eq. (3)), we first try to recover
a watermark �̂� from 𝐽 using a decoding function D:

�̂� = D (𝐽, 𝐾repr) (6)

Next �̂� is compared against 𝑊 , if the deviation is above some
threshold 𝑇 :

∥�̂� −𝑊 ∥ ≥ 𝑇 (7)

then 𝐽 will be accepted otherwise rejected.

noise embedded output

verification key

noise extraction noise feature verification

Figure 3: Noise verification

C. Threat model

Given rendering tasks each contains basically a water-
marked scene �̂� and some range of frames required to be
rendered, the goal of an attacker, namely a malicious worker
(or in general a group of maliciously colluding workers [13]),
is to generate rendered frames that pass the noise verification,
with computational costs significantly lower than doing render
this range by some conventional rendering software.

By Kerckhoff’s principle, it is essential that the attackers
know the noise generation and verification algorithms, working
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Figure 4: A random vector of 5 atomic watermarks (periods ∼ N (25, 5))

parameters including trade-offs. But the task identification
numbers and the corresponding verification keys are kept
secret. Furthermore, we require a strong assumption that
the attackers cannot detect the existence of watermarks in
scenes. That means attackers can analyze and even modify
different watermarked scenes �̂�(s) but they cannot distinguish
objects of the noise wrapping vector Ω (discussed in detail
in section III-B) embedded in �̂�(s) from original graphical
objects of 𝐺. Otherwise, we assume no constraint on the
communication capability of colluding attackers.

Not surprisingly, the security of ANGV can be modeled as
the problem of sending steganographic messages over a public
communication channel with passive adversaries [14], [15].
Indeed, let us consider some graphics scene, by repetitively
receiving rendering tasks for this scene and sending results
(both genuinely rendered and intentionally forged), an attacker
(or set of colluding attackers) knows a set of accepted and
rejected images. The attacker analyzes these tested images to
estimate probability distributions 𝑃S and 𝑃C for respectively
images that would pass the noise verification and images that
would be rendering results of the scene. We use the traditional
notations of the steganography literature: 𝐶 for cover-work and
𝑆 for stego-work [16].

The information-theoretic security of ANGV is quantified
by the Kullback–Leibler divergence (i.e. relative entropy)
𝐷 (𝑃C ∥ 𝑃S) of 𝑃C from 𝑃S . Concretely, ANGV is called
𝜖-secure if

lim
𝑛→∞

𝐷 (𝑃C ∥ 𝑃S) ≤ 𝜖 (8)

where 𝑛 is the number of tested images. In particular, 𝜖 = 0
if and only if 𝑃C = 𝑃S , or the attacker cannot distinguish
watermarked images from genuinely rendered ones, in this
case we have perfect security.

Remark. The distributions 𝑃S and 𝑃C represent partial
knowledge of the attacker obtained by analyzing the set of
tested images: the larger this set (or the larger 𝑛), the more
precise estimation for 𝑃S and 𝑃C .

III. IMPLEMENTATION OF ANGV

Section II presents a high-level description of the Active
Noise Generation and Verification algorithm. In this section,
we discuss in detail the current implementation approaches
and proposed trade-off values.

A. Structure of noise

As introduced in eq. (2), a noise 𝑊 is a random vector
(𝑤𝑖)1≤𝑖≤𝑛 where each element is independently chosen from
a normal distribution. This atomic watermark is constructed
as a rectangular image of periodic patterns as follows:

• let fix some values 𝑀, 𝑁 for the width and the height of
the rectangle, and

• let X𝑖 ,Y𝑖 be independent and identically distributed nor-
mal random variables:

X𝑖 ∼ Y𝑖 ∼ N
(
𝜇, 𝜎2

)
(9)

for some 𝜇 and 𝜎, then take 𝑋𝑖 , 𝑌𝑖 be respectively some
samples of X𝑖 ,Y𝑖 .

The complex atomic signal 𝑤𝑖 is defined by:

𝑤𝑖 (𝑥, 𝑦) = 𝐴𝑒
2𝑖 𝜋

(
𝑥
𝑋𝑖

+ 𝑦

𝑌𝑖

)
(0 ≤ 𝑥 < 𝑀, 0 ≤ 𝑦 < 𝑁) (10)

for some amplitude 𝐴. We observe that:

𝑤𝑖 (𝑥, 𝑦) = 𝑤𝑖 (𝑥 + 𝑋𝑖 , 𝑦) = 𝑤𝑖 (𝑥, 𝑦 + 𝑌𝑖) ∀𝑥, 𝑦

then 𝑋𝑖 , 𝑌𝑖 are actually the horizontal and the vertical periods.

Remark. X𝑖 and Y𝑖 are elements of a set {X𝑖 ,Y𝑖 | 1 ≤ 𝑖 ≤ 𝑛}
of independent and identically distributed normal random
variables N

(
𝜇, 𝜎2) . The parameters 𝜇 and 𝜎 are chosen by

analyzing the input scene that is discussed in section III-C.

Proposition 1 (Fourier transform of complex atomic signals).

𝐹𝑖 (𝑢, 𝑣) =
𝐴

𝑀 × 𝑁

(
1 − 𝑒2𝑖 𝜋 𝑀

𝑋𝑖

) (
1 − 𝑒2𝑖 𝜋 𝑁

𝑌𝑖

)(
1 − 𝑒2𝑖 𝜋

(
1
𝑋𝑖

+ 𝑢
𝑀

) ) (
1 − 𝑒2𝑖 𝜋

(
1
𝑌𝑖

+ 𝑣
𝑁

) )
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Proof. Direct calculation (for details, see appendix A-A). □

The structure of noise given in eq. (10) has two folds: we
empirically find that this form of signal makes the wrapping
graphical objects (discussed in section III-B) persistent in
the rendering of graphics scenes. Furthermore, the distortion
raised by any atomic watermark is easily controlled thanks to
the simple form of the signal amplitude given in proposition 1.

The spectrums of atomic signals play a crucial role in the
noise verification since they help to distinguish embedded
noises from the original image signals. They are also com-
pletely determined by the periods 𝑋𝑖 , 𝑌𝑖 given fixed 𝑀, 𝑁 since
the discrete Fourier transform in proposition 1. In turn, these
periods statistically rely on the expectation 𝜇 by eq. (9), we
will discuss how to choose this value in section III-C.

The length 𝑛 of the noise vector is one of the principal
factors which decides the robustness of noise: the higher the
value 𝑛, the lower the false positive of noise verification.
But this size influences the quality of the rendered image:
the lower value 𝑛, the higher fidelity of the rendered images.
Consequently, the value 𝑛 is a trade-off between the robustness
of the embedded noise and the fidelity of the rendered image,
it is empirically chosen to be about 8 to 15.

The fig. 4 shows a noise as a vector of 5 atomic water-
marks and the Fourier transforms showing the corresponding
frequency characteristics. The vital frequencies of energy are
clearly shown in the spectrums. For illustration purpose, we
take 𝑋𝑖 = 𝑌𝑖 ∼ N (25, 5) (1 ≤ 𝑖 ≤ 5), and 𝑀 = 𝑁 = 512.

B. Noise insertion

Given a scene 𝐺, the random vector 𝑊 = (𝑤𝑖)1≤𝑖≤𝑛 is
embedded into 𝐺 by first wrapping each atomic 𝑤𝑖 by a
graphical object: let denote it 𝜔𝑖 , then we obtain a vector
of objects Ω = (𝜔𝑖)1≤𝑖≤𝑛. Next we insert Ω into 𝐺 so that
every 𝜔𝑖 contributes to the rendered image, namely they distort
this image. The distortion is kept to be lower than the human
perception of light [11], [12].

1) Geometric constraints: By the nature of physically based
rendering [1], an object (or any part of it) in the scene will not
be visible if and only if there is no visible light (or in general
the light is out of the capability of the sensor) scattered from
the surface of the object to the digital camera object. This
may be caused by several reasons: the object is not located in
the frustum of the camera, is hidden by other objects, or the
object is made of some transparent material. Furthermore, the
atomic signals 𝑤𝑖 (1 ≤ 𝑖 ≤ 𝑛) should not interfere themselves
since this makes the noise verification to be unnecessarily
complicated. Consequently, we require the noise embedding
to satisfy first the following constraints:

• there are no collisions between 𝜔𝑖 (1 ≤ 𝑖 ≤ 𝑛),
• Ω is completely located in the camera frustum,
• no 𝜔𝑖 is hidden by another object (even partially), includ-

ing both 𝜔 𝑗 ∈ Ω, 𝑗 ≠ 𝑖 and objects of the scene.
As mentioned in section III-A, the characteristics of atomic

noises in frequency domain are crucial for the robustness of

noise verification: we need to restore a certain amount of infor-
mation about these characteristics from very small distortions
made by the objects 𝜔𝑖 ∈ Ω on rendered images. Because
of the unavoidable requirement about the fidelity of images,
we have to keep these distortions local, concretely these
distortions must be well-placed on regions whose locations
can be pre-calculated. A practical approach is to constrain
the distortion made by 𝜔𝑖 to be of the same shape as the
atomic noise 𝑤𝑖 . Geometrically, each 𝜔𝑖 has a rotation vector
which characterizes the direction of the object in the global
coordinate system (i.e. world space [1]) containing all objects
of the scene 𝐺. To keep the rectangular shape of the distortion
of 𝜔𝑖 , we require that:

• the rotation vector of 𝜔𝑖 is equal with the rotation vector
of the digital camera of 𝐺 for all 𝜔𝑖 ∈ Ω.

2) Distortion region: Under constraints about position and
direction of noise objects, the imprint of 𝜔𝑖 on the rendered
image is a rectangular region denoted by:

𝑘𝑖 ≜
(
𝑥ul𝑖 , 𝑦ul𝑖 , 𝑥

lr
𝑖 , 𝑦lr𝑖

)
(11)

where
(
𝑥ul
𝑖
, 𝑦ul

𝑖

)
and

(
𝑥lr
𝑖
, 𝑦lr

𝑖

)
are respectively the upper left

and lower right positions in the image coordinate system. It is
important to note that 𝑘𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 can be computed
without rendering the scene 𝐺.

For the size of distortion regions, similar with the length
of the noise random vector, there is a compromise between
the robustness of the embedded noise and the fidelity of
the rendered frame. The larger the distortion 𝑘𝑖 , the higher
information of 𝑤𝑖 can be restored then the higher robustness
of the noise verification; but the lower the distortion 𝑘𝑖 , the
higher fidelity of the image. Empirically, we use the bounds
4 ≤ 𝑥lr

𝑖
− 𝑥ul

𝑖
, 𝑦lr

𝑖
− 𝑦ul

𝑖
≤ 7 for all 1 ≤ 𝑘 ≤ 𝑛.

The fig. 5 shows some distortion results of rendering wa-
termarked scenes. From two original scenes, noise vectors of
length 12 with different distortion sizes are embedded, then
different watermarked scenes are generated. When rendering
the scenes containing noises whose distortion sizes are 7 or 8,
the distortions are visible under the form of small rectangles
dispersed in the rendered images. In contrast, when the sizes
are 4 or 5, the distortions are imperceptible.

Remark. While the atomic watermarks are quite large, the
distortions made by them on rendered images are constrained
relatively small. The fig. 4 shows atomic watermarks of size
512 × 512 which are used for watermarking scenes shown
in fig. 5, their imprints are about 4×4. The sizes of the rendered
images are much larger: 1080 × 1080 and 1920 × 1080.

C. Adaptive noise spreading

As discussed above, each atomic 𝑤𝑖 ∈ 𝑊 has its distortion
contribution at the spatial region 𝑘𝑖 on the rendered image.
Since the rendering process contains multiple options to im-
prove the quality of the output (noise reduction, anti-aliasing,
etc.), it is severe if the region 𝑘𝑖(s) fall into perceptually
insignificant regions [8] of the image because the deliberate
distortions raised by 𝑤𝑖(s) would be eliminated by the render-
ing enhancement. Hence, distortions are preferred to be placed
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(a) Source: Coca Cola bottle (b) Distortion size = 8 (c) Distortion size = 5

(d) Source: Glass Tea mug (e) Distortion size = 7 (f) Distortion size = 4

Figure 5: Rendered watermarked graphics scenes (random vector length = 12)

in human perceptually significant regions. However, to keep
the compromise between the fidelity of the rendered frames
and the robustness of noise verification, the strength of the
distortion of each 𝑤𝑖 must be tuned so that its deviation from
locally enclosed regions is within a predetermined bound.

We handle this problem using the adaptive noise spread-
ing [17], [18], [19]. Research on the human visual perception
agrees that the important information of images is located at
high energy and low frequency spectral regions [11]. Then
before embedding the object vector Ω, we render the scene 𝐺
at some low settings to get a sampling instance of the image.
Next, we proceed both the spatial and spectral analysis on this
instance to get perceptually significant spatial regions, called
preferred regions. The atomic noises 𝑤𝑖(s) will be placed
in these regions. Simultaneously, we tune the expectation
value 𝜇 used in generating atomic noises so that the energy
(statistically given in proposition 2) of high frequencies of the
noises are sufficiently higher than the threshold used in the
noise verification (c.f. section III-E).

Proposition 2 (Convergence of energies). Let {X𝑖 ,Y𝑖 | 𝑖 ∈ N}
be a set of independent and identically distributed normal
random variables X𝑖 ∼ Y𝑖 ∼ N

(
𝜇, 𝜎2) . Let 𝑡 [

𝑋𝑖 𝑌𝑖
]

be a
sample of the random vector 𝑡 [X𝑖 Y𝑖

]
and 𝑤𝑖 be the signal

(𝑥, 𝑦) ↦→ 𝐴𝑒
2𝑖 𝜋

(
𝑥
𝑋𝑖

+ 𝑦

𝑌𝑖

)
for any 𝑖 ∈ N. Then the average of

discrete Fourier transforms 𝐹𝑛 = 1
𝑛

𝑛∑
𝑖=1
𝐹𝑖 converges:

𝐹𝑛 (𝑢, 𝑣)
𝑎.𝑠−−−−→

𝑛→∞
𝐴

𝑀 × 𝑁

(
1 − 𝑒2𝑖 𝜋 𝑀

𝜇

) (
1 − 𝑒2𝑖 𝜋 𝑁

𝜇

)(
1 − 𝑒2𝑖 𝜋

(
1
𝜇
+ 𝑢

𝑀

) ) (
1 − 𝑒2𝑖 𝜋

(
1
𝜇
+ 𝑣

𝑁

) )
for all 0 ≤ 𝑢 < 𝑀, 0 ≤ 𝑣 < 𝑁 .

Proof. Direct application of the continuous mapping theorem.
For details, see appendix A-B. □

It is worth noting that the rendering work of 𝐺 generally
contains multiple tasks, each requires to render multiple image
frames. But the number of reference instances used for spectral
analysis is much smaller, practically less than 1% the total
number of rendered frames. While keeping the robustness of
ANGV, we can adjust this ratio be even smaller by increasing
the size 𝑛 of the noise vector 𝑊 .

D. Verification key generation

The constraints and trade-offs discussed in sections III-B
and III-C are to ensure the fidelity of rendered results and
the robustness of the verification, but they do not concern
the security. Indeed, any attacker knowing the algorithm and
parameters including trade-offs, can straightforwardly generate
(without rendering the graphics scene) forged images with the
same spectral characteristics, finally bypasses the verification.
The security is supported using verification keys.

https://free3d.com/3d-model/coca-cola-bottle-434255.html
https://free3d.com/3d-model/tea-mug-791329.html
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(a) Enveloping region (distortion region at the center) (b) After applying the Laplacian filter

Figure 6: Noise verification using Laplacian filter

Each rendering task has a secret key, in current implementa-
tion, this key is also the task identification number 𝐽id. When
embedding the noise vector 𝑊 into the scene 𝐺, this number
is used to compute distortion regions 𝑘𝑖 for all 1 ≤ 𝑖 ≤ 𝑛, the
vector (𝑘𝑖)1≤𝑖≤𝑛 is called verification key. The computation is
modeled as a function (c.f. eq. (3)):

𝐾verif : (𝑆,𝑊, 𝐽id) ↦→ (𝑘𝑖)1≤𝑖≤𝑛

In the operation of the rendering network, the leak of used
verification keys is unavoidable. For instance, a worker may
register itself to become a verifier node; when got accepted, it
will be assigned verification tasks containing verification keys,
then will be able to collect used keys. Even worse, colluding
workers may exchange collected keys so that each of them
will possess a much larger collection [13]. Another possibility
is the malicious workers may get verification keys from some
compromised verifiers. Hence 𝐾verif must be designed so that
the knowledge about used keys does not leak any information
about the next generated keys. The following proposition is
necessary for the security of ANGV.

Proposition 3. 𝐾verif is a cryptographic hash function.

E. Noise verification

Given a tested image 𝐽 and a verification key 𝐾 = (𝑘𝑖)1≤𝑖≤𝑛,
the goal of noise verification is to recover and check the trails
of noises in 𝐽 at all regions 𝑘𝑖 . For each 𝑘𝑖 , we pick an atomic
enveloping region 𝑣𝑖 determined by:

𝑣𝑖 ≜
(
𝑥ul𝑖 − 𝛿𝑥𝑖 , 𝑦ul𝑖 − 𝛿𝑦

𝑖
, 𝑥lr𝑖 + 𝛿𝑥𝑖 , 𝑦lr𝑖 + 𝛿𝑦

𝑖

)
(12)

where 𝛿𝑥
𝑖

and 𝛿𝑦
𝑖

are the width and the height of 𝑘𝑖:

𝛿𝑥𝑖 = 𝑥lr𝑖 − 𝑥ul𝑖 + 1 𝛿
𝑦

𝑖
= 𝑦lr𝑖 − 𝑦ul𝑖 + 1 (13)

Since any enveloping region is so small that spectral analysis
cannot give reliable results, hence to filter the distortions of
noises (i.e. the trails of high energy) we compare gradients of
the region and the contained distortion region; one way to do

that is using the Laplacian filter. Let ∇2 denote the Laplacian
operator, calculate the mean of each enveloping region 𝑣𝑖:

𝑣𝑖 =
1
|𝑣𝑖 |

∑︁
(𝑥,𝑦) ∈𝑣𝑖

(
∇2𝑣𝑖

)
(𝑥, 𝑦) (14)

and the mean of corresponding distortion region:

𝑘 𝑖 =
1
|𝑘𝑖 |

∑︁
(𝑥,𝑦) ∈𝑘𝑖

(
∇2𝑣𝑖

)
(𝑥, 𝑦) (15)

where |𝑣𝑖 | and |𝑘𝑖 | are respectively the area of 𝑣𝑖 and of 𝑘𝑖 .
Then compare the deviation (c.f. eqs. (6) and (7)):

𝑒𝑖 ≜ |𝑣𝑖 − 𝑘 𝑖 | (16)

with some energy threshold. Using the noise tuning discussed
in section III-C, we experimentally accept the existence of the
atomic watermarked 𝑤𝑖 when 𝑒𝑖 ≥ 5.

If there is a distortion region where the deviation 𝑒𝑖 is lower
than the threshold then the image 𝐽 is immediately rejected,
otherwise 𝐽 is accepted.

Remark. From the construction of enveloping regions from
distortion regions, the areas can be simply calculated by |𝑘𝑖 | =
𝛿𝑥
𝑖
× 𝛿𝑥

𝑖
and |𝑣𝑖 | = 9 × |𝑘𝑖 |.

The fig. 6a shows an enveloping region of size 9 × 9, its
distortion region is of size 3×3 located at the center, numbers
at each pixel are the RGB color values. The fig. 6b shows the
enveloping region after applying the Laplacian convolution.

F. Threat analysis

The threat analysis of ANGV is based on the security model
mentioned in section II-C. It requires careful and sophisticated
settings (it may be worth noting that the rendering problem
itself is undecidable in general [20]) then we refer the details
to a technical report. We present only some basic results that
can be rapidly proven from current settings.
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1) Attacks on verification keys: As discussed in sec-
tion III-D, colluding attackers may know a set of used keys,
then use these keys to predict the next keys (this is called
random number generator attack [21]). Furthermore, a large
enough set of workers may also temporarily saturate the ren-
dering task assignment mechanism of the manager to control
which nodes will be assigned [13]. These nodes already know
the verification keys used for the assigned tasks, then they
generate straightforwardly forged images which validate the
noise verification. In short, once the verification key generation
is predictable, the noise verification will be compromised.

This attack is mitigated due the cryptographic hash property
of 𝐾verif (c.f. proposition 3): knowledge about generated keys
does not leak any information about the next keys.

2) Attacks on noises: Another kind of attack is based on
analyzing rendered frames to predict the possible positions of
distortion regions. Below is a simple result for extreme cases.

Proposition 4. Let 𝐼 = R (𝑆) be the rendered frame of some
scene S, if 𝐼 is a constant signal or white noise then ANGV
scheme is perfectly secure.

Proof. We prove for the case of constant signals, the argument
for white noises is similar. For simplification, we do not take
the constraints about the fidelity of watermarked signals in
to account and suppose that 𝐼 is the constant binary signal
𝐼 (𝑥, 𝑦) = 0. The distortions of any noise vector of length
𝑛 occurs at distinguished and uniformly random positions
(𝑥𝑖 , 𝑦𝑖)1≤𝑖≤𝑛 on the image, or 𝐼 (𝑥𝑖 , 𝑦𝑖) = 1 for all 1 ≤ 𝑖 ≤ 𝑛.
Since 𝐾verif is a cryptographic hash, 𝑃C = 𝑃S = U⊗𝑛

𝐼
, hence

𝐷 (𝑃C ∥ 𝑃S) = 0. □

Many researchers observe that the data watermarking can
be considered as the communication over noisy channel where
the watermarks are signals and the content data is noise [9],
[22]. Under this perspective, proposition 4 is actually a special
case of the Shannon’s noisy channel coding theorem. The
spectrums of signals are Dirac pulses for constant signals and
white noises for white noises (c.f. fig. 8), then noises can
be indistinguishably inserted everywhere. From the attacker’s
point of view, there is no information to make any significant
estimation about the positions of the watermark.

Figure 8: Trivial signals and magnitude spectrums
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Figure 7: Rendering flow with Active Noise Generation and Verification
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Scene Rendering time Rendered frame size
Coca-Cola 8.09 1080 × 1080
Grease Pencil Bike 4.30 2880 × 1620
Blender 3.5 Splash 11.41 1327 × 1250
Bathroom Above Corner 146.41 4000 × 3000

Table I: GPU rendering time of scenes (in seconds)

3) Attacks on verifiers: In case where verifiers are com-
promised, we employ the consensus mechanism of the Inferix
blockchain network: the verification will be executed by sev-
eral verifiers nodes through consensus. In order to minimize
computational resource wastage, once two or more nodes
reach a consensus, then the rendering result is considered
successfully verified.

G. Performance evaluation

We evaluate the execution time of noise insertion and noise
verification on several scenes, the lengths of the noise vectors
variate from 2 to 40. The tests are executed on a workstation
of Intel®Core™i5 2.5 GHz CPU, 32 GB RAM and NVIDIA
GeForce RTX3070 GPU. The results are given in fig. 9 for
noise insertion and in fig. 10 for noise verification, detailed
data is given in tables in appendix D.

The noise insertion needs to analyze the structure of the
input scene to generate and insert noises, that explains the
experimental results in fig. 9 where the execution time, while
being proportional with the length of the noise vector, depends
importantly on the complexity of input scenes. A loose quan-
tification for this complexity can be observed via the execution
times needed to render the scenes, shown in table I.

Figure 9: Noise insertion

Whereas the noise verification needs only to analyze the
distortion regions whose locations are given by the verification
key, then the execution time depends mostly on the number
of the regions (which is also the length of the noise vector)
and slightly on the size of the rendered frame.

Figure 10: Noise verification

H. Integration

We integrate the Active Noise Generation and Verification
scheme into the original rendering flow (c.f. fig. 1) by placing
respectively the noise generation and the noise verification into
the rendering task controller of the manager and the proof-of-
rendering verification of the verifier. The completed flow is
depicted in fig. 7.

In the introductory section of the paper, we have discussed
the problem of rendering verification, that is to automatically
verify whether the submitted scenes of users are genuinely
rendered or not. The ANGV is proposed to deal with the
challenge, ANGV serves then as a proof of rendering (PoR),
inspired from the proof of ownership schemes [2], [3]. Other
components of the Inferix network simply refers PoR for the
underlying ANGV algorithm.

IV. DECENTRALIZED VISUAL COMPUTING

Inferix is a decentralized physical GPU network connected
to end users, graphic software, or AI models through a feature-
rich software layer that is continuously expanded by Inferix
Labs and the community of developers within the Inferix
ecosystem. Inferix is built upon the core PoR algorithm,
which integrates both on-chain and off-chain verification. This
section will outline the system architecture and key design
details of the Inferix decentralized GPU system.

The system architecture of the Inferix network is described
in fig. 11, consisting of three main components: Manager node,
Worker node, and Client Apps. Data is stored and accessed
through a Decentralized Storage System.

A. Client Apps plugin

Inferix provides plugins and APIs that allow traditional
graphic design software to easily send 2D/3D graphic data
into the Inferix decentralized rendering system and receive
photorealistic images or videos in return.

At the time of writing this paper, there is only one project
on the market offering a GPU-based decentralized rendering
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Figure 11: Inferix decentralized rendering architecture

solution, but it requires users to use (and pay for) their
proprietary rendering engine. Inferix emphasizes the principle
of freedom in line with the Web3 spirit, not mandating that
end-users use a specific engine or software to leverage its GPU
compute network. The Client Apps plugin system, developed
collaboratively by the Inferix team and developers within
the ecosystem, supports most major rendering software and
engines such as Blender, SketchUp, Cinema 4D, 3ds Max,
and more.

B. Client API and SDK

The core of all real-time rendering engines like Unity, Un-
real Engine (UE), Three.js, and Babylon.js, Actif3D [23] lies
in the combination of static space rendering (lightmap baking)
and real-time rendering of dynamic elements. Lightmap baking
is typically performed by developers during the game build
process, but this process often requires several hours and
expensive hardware. Traditionally, a large amount of CPU
power was used for this task, but recently, most game studios
have shifted to using GPUs. However, the costs associated
with GPUs remain high, and the long rendering times result
in significant waste and expense.

Inferix offers a decentralized infrastructure for baking
lightmaps at a lower cost. Moreover, by leveraging parallel
processing across multiple hardware setups in different lo-
cations, Inferix can significantly reduce rendering times for
large-scale projects. To support this process, Inferix provides
tools for lightmap baking through its rendering system, along
with an SDK that enables the integration of these baked
lightmaps into various rendering engines.

C. Manager node

Manager node(s) are computers that handle API load bal-
ancing and manage Inferix’s services, including Rendering, AI
Training/Inference, and Remote PC services.

A manager node consists of two components: Service
Controller and Job Controller. The rendering cost calculations
based on the PoR algorithm will be sent by the Service
Controller to the end users, allowing them to decide whether
to submit an order. The Job Controller (c.f. section I-A) is
responsible for dividing rendering jobs into different tasks and
assigning them to Worker nodes for execution.

Example. A 1000-frame video rendering job can be divided
into 200 tasks, with each task rendering 5 frames.

These tasks are pushed into a queue then available workers
that meet the minimum hardware capability requirements,
based on the Inferix Bench index (c.f. section VI-E), will
be randomly assigned to perform the rendering tasks. The
rendered results are then aggregated according to the process
outlined in fig. 7.

D. Worker node

It is where the actual rendering takes place (c.f. fig. 7). Each
Worker node is equipped with a tool called Render Engine
Controller, along with one or several render engines, such as
Blender Cycles, V-Ray, Keyshot, D5 Render, Octane, etc.

The render engines utilized by Worker nodes typically
rely on path-tracing/ray-tracing techniques, which demand
substantial compute resources. Some of these engines are
open-source and free, such as Cycles, while others, like V-
Ray, are paid software. If there are any render engine costs,
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they will be factored into the rendering price that the Inferix
network charges users.

E. Decentralized storage

Data storage and security are critical for Inferix users. The
data for a 3D scene typically ranges from a few dozen MBs
to several GBs, while AI model data can reach up to several
TBs. Managing this data requires specialized methods.

1) Data categories: 3D data stored in the Inferix system
includes:

• Geometry data of 3D models, characterized by polygons
that form the shape of objects. Depending on the render
engine, different formats may be used. The higher the
number of polygons, the more detailed the rendering
result will be; however, the render time will also increase,
and more storage space will be required.

• Texture data, which is the surface image of the object.
Inferix uses data formats with the best compression
algorithms for GPUs, such as Basis and KTX, alongside
common formats like JPEG, PNG, TIFF, or WebP.

• Rendered results in image format
• Rendered results in video format
• Structural data in JSON format
2) Multi-level 3D polygon data: In the stored data on

Inferix, aside from images and videos, the geometry data of
3D models consumes the most storage space. Each time a
render is performed, the Worker node must download this
data locally so that the render engines can execute the task.
This process can consume significant bandwidth and time.
To save bandwidth and reduce download times, 3D models
are converted into two levels of detail, known as high-poly
and low-poly, and are pre-stored on the Inferix network. The
existence of multiple levels of 3D data is referred to as multi-
level 3D polygon data.

3) Polygon digester: After a 3D data file is stored on
Inferix, it may be queried multiple times by Worker nodes
or design software. Depending on the needs of the query, the
original data is converted into different levels of polygon detail
through a lossy conversion algorithm. This process is handled
by the Polygon Digester tool within the Inferix storage system.
This tool ensures that the appropriate level of detail is provided
for each task, optimizing both storage and performance by
reducing unnecessary complexity in the 3D models when high
detail is not required.

4) Decentralized storage: With the large volume of data
involved, using traditional cloud storage models at traditional
data centers can be extremely costly. Peer-to-peer (P2P) and
decentralized storage networks like IPFS and Filecoin offer a
significant reduction in costs while maintaining access speeds
comparable to traditional methods. The 3D data storage sys-
tem of Inferix will predominantly rely on such decentralized
networks, leveraging their cost-effectiveness and efficiency for
managing extensive data volumes.

5) Decentralized cache: Inferix’s 3D data caching system
utilizes decentralized CDNs. This approach enhances the dis-
tribution and retrieval of data across the network, reducing
latency and improving access speeds by caching frequently

requested 3D assets closer to the end-users. The decentralized
nature of the CDN ensures that caching is distributed across
multiple nodes, providing redundancy and resilience while
minimizing the load on any single server. This setup aligns
with Inferix’s broader strategy of leveraging decentralized
technologies for efficient data management.

F. Data security with FHE and TEE

Data stored within the Inferix network is categorized into
two types:

• Session data, which includes input data along with tem-
porary data generated during the rendering process. This
data typically exists for a short duration, ranging from a
few minutes to several hours.

• Persistent data, which consists of the output from the
rendering process and is stored long-term in the system.
Examples of persistent data include images and videos
after rendering, or VR scenes created after lightmap
baking.

Inferix encrypts session data to ensure it remains secure
against decryption attacks during data transfer. For persistent
data, Inferix offers long-term hosting on its storage system
and allows users to share the data publicly or with specific
permissions over the Internet.

Our surveys show that, on average, over 80% of 3D model
data from graphic artists are public data shared on the internet,
while nearly 20% are their original creations and need to
be protected. Therefore, Inferix will offer data security level
options for end-users to choose from. Higher security level
options will incur additional costs for computing resources,
storage, and bandwidth, which will be added to the service
fees that the end-user must pay.

There are three components related to data security in the
Inferix network: the Manager, Worker and Verifier. We will
present a security approach for each of these components
below.

1) Verifier data security enhancement with FHE: Verifier is
the component that receives the least amount of data among the
three main components of the Inferix network. The input data
for a Verifier includes a random subset of the rendering job’s
output along with the algorithm and key to verify it. Rendering
jobs that do not require high data security will be executed
by standard Verifiers. Otherwise, those that require high data
security will be executed by secure Verifiers. Inferix uses Fully
Homomorphic Encryption (FHE) [5], [6], [24] technology on
secure Verifiers to ensure that end-user data is completely
protected from leakage. The hardware requirements for secure
Verifiers are higher than those for standard Verifiers, and
specifically, these nodes must be equipped with GPUs.

Figure 12 illustrates the operation of the PoR algorithm
combined with FHE. All information related to the verifying
task including the rendering output data and verification key
is encrypted using FHE and sent back to Manager node. The
verification result is then sent back to the Manager node for
review, while the Verifier remains completely unaware of the
content of the verification process or the verification result.
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Figure 12: Rendering flow with PoR and FHE

2) Worker and Manager data security enhancement with
TEE: The Manager and Worker are the components that
receive the most information in the Inferix network. For user
data with a high priority on security, Inferix adopts the Trusted
Execution Environment (TEE) solution [25]. This solution
requires the node to use a CPU that supports TEE, such as
Intel SGX or AMD SEV. The additional costs incurred due to
the high-end hardware requirements will be factored into the
service pricing, allowing users to choose and make decisions
accordingly.

V. DECENTRALIZED FEDERATED AI

In section IV, we have introduced the physical GPU network
used for graphics rendering. Next, we will discuss how we
utilize this GPU network for AI training and inference. These
processes are essential items of Inferix’s Phase 2 strategy,
aligning with the core principles of Web3: openness, decen-
tralization, self-governance, and diversity.

Currently, AI advancements are predominantly driven by
industry giants like Google and OpenAI, relegating most
users to passive roles. This situation runs counter to the
principles of Web3 and DePIN. To bridge this gap, we propose
an application framework for deploying federated learning
models on the Inferix GPU infrastructure in the following
sections. This framework is designed not only to reshape the
existing landscape but also to elevate the intelligence of the
evolving DePIN ecosystem.

A. Federated learning with TensorOpera

Federated learning and its practical benefits have recently
started to see widespread application. This article will not
delve into the concept of federated learning itself but will focus
on applying it to leverage the GPU infrastructure of Inferix.

Several foundational projects have developed tools/SDK for
federated learning developers. After extensive evaluation, we
have chosen the open-source TensorOpera® as the basis for
developing the Inferix Federated Learning framework.

B. Meta LLaMA

In its GPU hardware segment, Inferix focuses on devices
optimized for graphics rendering, with the NVIDIA GeForce
RTX3090 and RTX4090 serving as the flagship devices.

The TensorOpera® team has released public data on de-
ploying pre-trained models like LLaMA-2 13B or LLaMA-
3 7B parameters on the RTX4090. Notably, LLaMA-2 13B
inference running on a single RTX4090 using TensorOpera’s
ScaleLLM achieves 1.88 times lower latency compared to the
same model running on a single A100 GPU using vLLM.
For the LLaMA-3 7B, it can run with a token batch size
of 256 on a single RTX4090, without additional memory
optimization [26].

In their introduction to ScaleLLM, the TensorOpera® team
claims that by utilizing this engine with the RTX4090, LLMs
can operate with three times less memory, run 1.8 times faster,
and be 20 times more cost-effective compared to using A100
GPUs in traditional data centers.
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Figure 13: Inferix and TensorOpera integrated architecture

Research and experimental benchmarks have shown that we
can train larger LLMs on a larger number of distributed GPUs
than in data centers with federated learning, using Gradient
Low-rank Projection (GaLore) [26], [27].

C. Stable Diffusion

Stable Diffusion inference can be easily deployed on various
Inferix hardware models, ranging from the NVIDIA GeForce
RTX3070 to the RTX4090 nodes. Additionally, the RTX4090
node is an exceptionally well-suited hardware model for
training Stable Diffusion models.

D. Other AI models

Other popular AI models, such as Bark, InstantID, and
Whisper, both training and inference, can also run on Inferix
GPUs through the TensorOpera AI platform.

E. Inferix AI

From the information presented above, we can conclude that
the hardware of the Inferix network is well-suited to serve as
an infrastructure for federated AI. Next, we will discuss the
design of the Inferix Federated AI system.

In the architectural design (c.f. fig. 13), Inferix enables
generative AI artists and content creators to access AI models
trained by AI Builders within the Inferix community, as well
as models trained by the Inferix Team itself (built-in models).
These services can be hosted on the Inferix Manager node
system or on the TensorOpera AI platform. The AI Builders
have the option to run their models directly on the Inferix
infrastructure or through the TensorOpera Bridge. The output

result can be hosted in Inferix infra with custom domain
option.

In addition to handling graphics rendering tasks, Inferix
GPU Nodes also serve as Federated Learning Clients by
running the Inferix TensorOpera CLI client built on Tensor-
Opera open source with Inferix PoW algorithm integrated.
This algorithm is used to calculate the actual work performed
by workers, excluding those involved in rendering tasks. It is
based on the Proof-of-Rendering mechanism to calculate the
Inferix Bench (c.f. section VI-E), incorporating an algorithm
to accurately measure the actual working time of a node.

VI. ECONOMIC MODEL

A. GPU compute market for visual computing and federated AI

The visual computing market was valued at over USD
36.5 billion in 2023 and is projected to grow at a CAGR of
more than 23% from 2024 to 2032. A significant trend within
this market is the rise of cloud-based rendering services, which
offer substantial benefits to designers, content producers, and
businesses alike [28]. The global federated learning market
was valued at USD 110.82 million in 2021 and is expected
to grow at a CAGR 10.7% during the forecast period 2022-
2030 [29].

There are approximately 4 million graphic designers work-
ing globally, generating an average of about 1.4 billion ren-
dering tasks per year. Traditional 3D graphic design appli-
cations such as Blender, SketchUp, 3ds Max, Maya, Cinema
4D, House3D, Actif3D... all require rendering operations to
produce images or videos that accurately simulate spaces,
characters, animations, and materials as they are designed.
Currently, designers using these software tools often need
high-end PCs with expensive GPUs. For example, an interior
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designer often uses a computer worth around $2000. Each 3D
video rendering process usually takes several hours. In terms
of software, aside from investing in 3D modeling software,
users also need to use a specialized software called a rendering
engine, such as VRay (paid) or Blender Cycles (free).

There is currently only one decentralized rendering solution
on the market, which serves as a competitor to Inferix.
However, this solution requires users to utilize a proprietary
rendering engine developed by them, which comes with a
significant licensing fee.

With Inferix, users simply need to install a plugin into
their preferred 3D software to access a crowdsourced GPU
network, allowing them to submit rendering requests with ease.
This approach significantly reduces rendering time compared
to using a standard PC and offers substantial cost savings
compared to traditional render farm services on the market.

B. Inferix vision

Inferix plans to implement a token economy model to
incentivize individuals and organizations worldwide to share
their GPU compute resources. This approach is designed to not
only lower the cost of GPU resources and enhance efficiency
but also create new revenue opportunities and business models
for participants in the decentralized network.

Inferix envisions creating a fairer, more efficient, and sus-
tainable distributed computing ecosystem through innovative
technology and economic models. By challenging the tra-
ditional monopoly on GPU power, Inferix aims to promote
the equitable distribution and efficient use of GPU resources,
fostering the broader adoption and development of visual
computing, AI, and blockchain technologies.

C. $IFX Token

Inferix tokens ($IFX) are integral to the value exchange
within the Inferix ecosystem and the operation of its decentral-
ized GPU network. GPU owners can earn $IFX tokens through
the following methods:

1) Participation in Inferix visual computing: Participating
in the visual computing network is one of the primary
ways to earn $IFX token rewards. Participants contribute
their computational resources (CPU/GPU, internet band-
width, storage) to assist with graphic rendering tasks.
This includes not only performing rendering work but
also contributing to PoR verification. The greater the
contribution, the greater the $IFX token reward.

2) Contributing to Inferix federated AI tasks: Participating
in the federated AI network is another key way to
earn $IFX tokens. In this process, participants contribute
their computational resources to support the training
or inference of AI models. Additionally, individuals
or groups can earn $IFX token rewards by engaging
in activities such as optimizing models and improving
training efficiency.

3) Running Verifier node: The Verifier nodes ensure the
integrity and service quality of Inferix network by
checking the visual computing or AI workers and their
service process. The parameters mainly include liveness,

capacity, and quality of service. The checking methods
include heartbeat collection, benchmark testing using
PoR, link data collection and analysis.

4) Engaging in Inferix governance activities: Another way
to earn $IFX tokens is by participating in the governance
of the Inferix network. $IFX token holders can take part
in the decision-making process, such as voting on net-
work protocol updates and adjustments to BMW (which
will be discussed hereafter) reward parameters. This
participation not only enhances the network’s democracy
and transparency but also allows holders to directly in-
fluence the direction of Inferix. Governance participants
are rewarded with $IFX tokens based on their level
of contribution to the network’s decision-making. This
approach is designed to incentivize and empower those
who actively participate in Inferix governance, ensuring
that the network evolves for the common good of the
community.

5) Joining Inferix professional artist network: 3D artists,
designers, and architects can join the Inferix professional
artist network and utilize Inferix GPU infrastructure
services. Based on the volume and frequency of each
individual’s IBM (c.f. section VI-E) consumption, In-
ferix will implement an $IFX token reward mechanism
to encourage end-users to use the service.

For GPU owners, please refer to section VI-I for more details
on how to earn rewards by running an Inferix node.

D. Burn-Mint-Work token issuance model

Increasing the token velocity and controlling inflation are
critical issues for any utility token. Various issuance models
for utility tokens have been proposed, but fundamentally
in DePIN projects, there are two commonly used methods:
Work Token and Burn-Mint-Equilibrium (BME). While the
Work Token (used by Filecoin project) has the advantage of
improving token velocity, it requires the provided service to be
purely a commodity, with no manual human intervention. On
the other hand, BME (used by famous projects like Helium
and Factom [30], [31]) lacks control over the volume of
verified work completed and the ability to adequately penalize
substandard service providers [32].

Inferix’s BMW (Burn-Mint-Work) is the token issuance
mechanism designed to address the creation of tokens based
on the amount of work completed and a Node’s working
capacity. When BMW is combined with the IBME mechanism
(c.f. section VI-E), it also helps solve the inflation control issue
within the Inferix system, allowing $IFX tokens to be minted
flexibly based on the total volume of work completed and the
total amount of money users pay for services across the Inferix
network.

Inferix’s BMW is an improvement on the BME (Burn-and-
Mint Equilibrium) algorithm, with the important parameter
being "work" calculated based on the PoR algorithm. While
BME balances only two parameters: burn and mint; BMW
balances three parameters: burn, mint and work. It incorporates
also penalty mechanisms for substandard providers from the
Work Token model.
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$ifxDollar is a token used for Inferix's internal services and cannot
be exchanged for real money in any form

 $ifxDollar will be expired if not used for over 01 year

Figure 14: Inferix Burn-Mint-Work token issuance model

When Inferix completes a graphics rendering or federated
AI task 𝑡 for a customer, by the Provider A, the network
charges a service fee calculated as follows:

F (𝑡) ≜ 𝑊𝑡 × P𝐴 (17)

where 𝑊𝑡 is the amount of work completed for 𝑡 measured
in IBM (c.f. section VI-H), and P (𝐴) is the unit price for
one IBM, which can be adjusted by Provider A. The Matcher
algorithm on the Manager node automatically searches and
provides the best options for both the user and the provider.

To order services, users must top up a prepaid account
with Inferix’s internal payment token, called ifxDollar, at an
exchange rate of 1 USD = 1 ifxDollar at the time of the top-up.

After completing a rendering job, 80% of the service fee
is used to purchase an amount of $IFX tokens from available
supply sources (e.g., DEX/CEX exchanges). This amount of
$IFX tokens is then burned. Next, 20% of the service fee
will be retained and managed by the Inferix Foundation, these
funds will be used to reward developers who contribute to the
Inferix ecosystem.

The issuance of new tokens on Inferix is executed after
each epoch period, initially set at 72 hours but later adjustable
through DAO governance. Suppose after an epoch period 𝑝,
the total amount of work completed across the network is
𝑊𝑝 . In that case, the system will issue a quantity of tokens
according to the following formula:

T ≜ 𝑊𝑝 × 𝐸𝑝 (18)

where 𝐸𝑝 is a parameter taken from the emission plan, which
is planned by Inferix governance and periodically adjusted by
monitoring the IBME ratio (c.f. section VI-H).

The newly issued $IFX tokens are allocated to stakeholders
in the network as detailed in section VI-G. This token issuance
process must be entirely independent of the token burn process
to generate ifxDollar mentioned above. When service demand
increases, more $IFX tokens are burned, leading to a decrease
in the total supply of $IFX, which puts upward pressure on
the price of $IFX tokens. This price increase results in fewer
tokens needing to be burned to complete the same amount

of work, thereby bringing the system back into equilibrium.
An increase in the price of $IFX tokens also increases the
profitability of providers, attracting more providers joining
and increasing supply. When service demand decreases, the
opposite scenario occurs, leading to a state of equilibrium.

E. Inferix bench and IBME

1) IB and IBM: Based on PoR, Inferix can assess the
computing power of a Worker node at a given time and uses
a measurement unit called Inferix Bench (IB). When IB is
multiplied by the node’s working time, it results in Inferix
Bench minutes, abbreviated as IBM. Thus, IBM is the metric
used to measure the workload within the Inferix network.

To provide a quantitative perspective, 1 IB is defined as
the average rendering capacity of a standard unit node with
2×NVIDIA GeForce RTX4090 GPUs, 1×Intel®Core™i9 CPU,
32 GB RAM and SSD storage. This figure is updated daily
using DAO mechanism, using benchmarks of a set of sample
scenes on 10 nodes. The hardware specification of standard
unit nodes and the sample scenes are also DAO-adjustable.

Assuming the average rendering time for one frame of
a scene 𝐺 in the sample set is 𝑇0

𝐺
, then it is not a fixed

number, but is instead derived from the combined rendering
capacity of the 10 randomly selected standard unit nodes at
the benchmarking time. The value of 𝑇0

𝐺
is influenced by GPU,

CPU, storage read/write speeds and network speeds at the time
of benchmarking, though the variation is negligible.

To determine the IB of any given node 𝑛, Inferix sends
render requests for scene 𝐺 (randomly selected) to that node
periodically. Assuming the average time it takes that node to
render one frame in 𝐺 is 𝑇𝐺 , the rendering power of 𝑛 is
defined by:

IB (𝑛) ≜
𝑇0
𝐺

𝑇𝐺
(19)

Thus, the larger the 𝑇𝐺 , the smaller the IB𝑛 value.
2) IBME: short for Inferix Bench Minutes Efficiency, is an

index used to evaluate the working efficiency of a set of nodes
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N over a working period 𝑃, determined by the formula of the
total IBM paid over the total apparent IBM:

IBME𝑃 (N) ≜
∑

𝑛∈N IBM𝑃 (𝑛)∑
𝑛∈N IBM𝑎

𝑃
(𝑛) (20)

where IBM𝑃 (𝑛) is the customer paid IBM for node 𝑛 and
IBM𝑎

𝑃
(𝑛) is the apparent IBM of node 𝑛 calculated by

multiplying the IB of a node by the elapsed time (in minutes)
of period 𝑃. We observe that IBME is always a figure below
100% and the higher the IBME ratio, the more efficiently the
network operates.

Demand

Lower Unit Costs

Total Paid IBM
IBME =

Total Run IBM

Higher GPU Utilization

Supply

More Liquidity

BMW Work & Mint

Higher $IFX Value

Figure 15: IBME flywheel

Recent reports from DePIN projects have highlighted a
significant issue: while the number of nodes participating in
the network is very high, many of these nodes are either
inactive or active but not receiving any service requests. By
controlling the IBME, Inferix will solve this problem.

In addition to planning and adjusting the emission plan
(c.f. section VI-D), IBME also assists Inferix governance in
making decisions related to the use of the Inferix Foundation’s
funds for promotional activities aimed at increasing supply or
attracting service demands.

F. Price simulation

We build now a price simulation for Inferix’s GPU ren-
dering service and compare Inferix’s price competitiveness
with traditional cloud rendering services. The details of these
calculations are listed in appendix B. The table in fig. 16 shows
the most important information.

Figure 16: Pricing simulation

In this simulation, the calculations are standardized for a
single GPU device. The provider price refers to the minimum
service price that a GPU provider will set to ensure that
revenue is always twice the cost per hour of operation.

In the best-case scenario, where GPUs receive enough tasks
to operate full-time every day, providers can break even in no
more than 17 months for the NVIDIA GeForce RTX3060,
RTX3070, and RTX3080 models; and 24 months for the
RTX3090 and RTX4090. However, since the RTX3090 and
RTX4090 models are better suited for federated AI tasks, their
IBME scores may be higher. Moreover, the choice of which
GPU model to use for rendering also depends on whether the
customer prioritizes shortening the rendering time or prefers
a more reasonable price. Therefore, the decision on which
device to invest in depends on the specific conditions of each
individual in particular market conditions.

A crucial point to note here is that with the proposed
provider price, Inferix’s service price is the equivalent of only
from 12% to 38% of the average price in the traditional cloud
rendering market at the time of writing this paper [33], [34],
[35]. This means that providers can adjust the price higher to
shorten the payback period.

Price of 1 IBM: Based on the calculation method for IBM
discussed in section VI-E, the price of 1 IBM is approximately
$0.016 according to this pricing simulation.

G. Token metrics and allocation

Token : INFERIX
Ticker : $IFX
Max supply : 1,000,000,000 $IFX

The total supply of $IFX is determined based on the as-
sumption that the Inferix network will serve approximately
4 million graphic artists and around 10 million end-users
utilizing generative AI services. With 1 billion $IFX tokens in
circulation, the token velocity of Inferix is expected to reach
a minimum of 10.0, according to the equation of exchange
𝑀 ×𝑉 = 𝑃 × 𝑇 .

Seed Investors

Strategic Investors

KOLs

Public Sales

Liquidity & Listing

Community Grants Fund

Inferix Foundation

Ecosystem Fund

50%

11%

9%

0.5%

2%

0.6%

14.4%

12.5%

Figure 17: $IFX token allocation

1) Token allocation: The token allocation of $IFX is de-
picted in fig. 17, that includes:

• Investors: Inferix raises capital from investors, including
seed, strategic, KOLs, and public investors, using 22.5%
of $IFX total supply.

• Liquidity and listing: 0.6% for DEX and CEX.
• Community grants fund: 14.4% for:

– initial airdrop for OG members,
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– initial grants for GPU providers,
– education grants for using Inferix in schools.

• Ecosystem fund: 50% for:
– Staking reward,
– PoR reward using BMW,
– Inferix platform expansion projects,
– Inferix hackathon and bug fixes,
– Inferix DAO building,
– Guaranteed Node Buyback (c.f. section VI-J2).

• Inferix foundation: 12.5% for:
– Inferix Labs operation activities,
– Inferix global expansion.

2) Token vesting: The token vesting is shown in table II.

Seed 6 months cliff, then 12 months linear vesting.
Strategic 6 months cliff, then 12 months linear vesting.
KOLs 10% unlocked at TGE, 3 month cliff, then 15

months linear vesting.
Public Sale 10% unlocked at TGE, 3 months cliff, then 4

months linear vesting.
Liquidity and listing 100% unlocked at TGE, circulated when

listed.
Community grants fund Unlock 3 million $IFX at TGE for community

airdrop. Later schedule is under DAO gover-
nance.

Ecosystem fund Locked at TGE, gradually unlocked under the
BMW model for GPU providers and Ecosys-
tem partners. Release all within 4 years.

Inferix foundation 12 months lock, then 24 months linear vest-
ing.

Table II: Token vesting

H. Governance

$IFX token holders participate in the network’s governance
decisions, including protocol updates, reward policy adjust-
ments, and so on. This decentralized governance structure
ensures the democratic and transparent nature of the net-
work. Governance decisions are made through a weighted
voting mechanism where $IFX holdings determine the vot-
ing weights. This encourages long-term holdings and active
participation in network governance.

The Inferix network backend infrastructure is built on three
core components: Worker node, Manager node and Verifier
node. With the expectation of serving 4 million designers,
Inferix will have around 1 million Worker nodes, with a
significant portion coming from the PCs of the designers
themselves. In a scenario where 4 million render jobs are
processed daily, the Inferix network would require approx-
imately 2500 Manager nodes to efficiently coordinate and
handle the PoR algorithm. In this scenario, Inferix would
need approximately 25,000 standard Verifier nodes to ensure
the entire network operates seamlessly with low latency. A
standard Verifier node is a machine that meets standard verifier
hardware requirements (c.f. appendix C).

I. Node staking and rewards

Inferix allocates up to 50% of its total token supply as
rewards for its node system, sourced from the Ecosystem
fund (c.f. section VI-G2). Additionally, Inferix will distribute

80% of its service revenue to the nodes through BMW model
(c.f. section VI-D). To earn these rewards, node owners must
stake a certain amount of $IFX tokens through purchasing a
node license and actively run their nodes to participate in the
Inferix network. Below is the reward mechanism for the nodes
in the Inferix network:

1) Worker: Workers are the most critical component of the
Inferix network. The reward pool for Worker nodes constitutes
75% of the Ecosystem fund and is distributed through the
BMW model. In other words, three-quarters of the 80% of
the network’s service revenue is allocated to Workers.

To receive BMW rewards, each Worker must hold an
amount of $IFX tokens at any given time. This token amount
acts as a penalty fund in case the Worker fails to meet Inferix’s
standards. The minimum stake amount of node 𝑛 can be
calculated as follows:

𝑆 (𝑛) ≜ 2 × E × IB (𝑛) × 𝑃 (𝑛) (21)

where IB (𝑛) is the benchmark value of the node (c.f. eq. (19)),
𝑃 (𝑛) is the price per IBM defined by the node provider
himself and E is a constant defined by number of minutes
of the Epoch period, that is 72 × 60 = 4320.

Example. Suppose that a provider owns a node with 32 GB
RAM, Intel®Core™i9 CPU, and a NVIDIA GeForce RTX4090
GPU, its computing power will be approximately 0.5 IB. To
participate in the Inferix network at a service price of $2 per
hour, it is needed to hold a quantity of $IFX tokens equivalent
to 0.5 × 2 × 4320 ÷ 60 = 72 USD.

There are also machines called Edges, specially designed
to participate in the Worker network. They are streamlined
by removing non-essential components and focusing on en-
hancing the CPU, GPU, RAM, and motherboard to optimize
performance for visual computing and federated AI tasks.

2) Verifier: Verifier is also an important component in
the Inferix network and is allocated 7.5% of the total $IFX
token supply for the reward pool. Inferix mobilizes a total
of approximately 25,000 Verifier nodes through node sale
programs. The first node sale program will be announced
before the Token Generation Event (TGE). In order to run a
Verifier node, we do not need to invest in powerful hardware
like Worker nodes, it is possible to run the verification on a
mobile device (c.f. appendix C).

3) Manager: The Inferix network requires 2500 Manager
nodes, which will be sourced through Manager node license
sales. Initially, when the mainnet goes live, the Inferix Foun-
dation will deploy no more than 100 in-house nodes of this
type to ensure network availability. The plan for Manager node
sales will be announced before the TGE. The reward pool for
these nodes is 1.25% of the total supply of $IFX tokens.

4) Penalty pool: This is a token fund collected from penal-
ties imposed on Worker nodes that violate Inferix standards
while performing assigned visual computing or AI inference
tasks. The fund is used as a reward for Verifiers who actively
contribute to ensuring the efficient operation of the network.
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J. Node sale and Guaranteed Node Buyback

1) Node sales: are crucial programs for building Inferix’s
compute network. Participants in these programs are required
to stake a certain amount of $IFX tokens by purchasing a node
license. The number of $IFX tokens needed varies depending
on the type of node and the timing of the license purchase.
Node sale programs will be organized into tiers based on the
order of the sale. As a general rule, the earlier the license is
purchased (the lower the tier), the cheaper the price. Licenses
purchased before the TGE are referred to as whitelisted and
participants who acquire whitelisted licenses will receive more
benefits and discounts compared to those who purchase after
the TGE.

2) Guaranteed Node Buyback: In order to ensure the sta-
bility of node supply, increase transparency, and safeguard
the rights of network contributors, Inferix introduces the very
special Guaranteed Node Buyback program.

1) Eligibility: Node license holders with a participation
rate of over 66.7% in executing Inferix network tasks,
and who have never been blacklisted, will be eligible to
participate in this program.

2) Timeline: Starting six months after the TGE, node
license holders will have a 7-day window to participate
in the program.

3) Execution options:
a) either buyback 100% with $IFX, value equivalent

to the price of nodes denominated in USDT at the
time of node purchase, there are 30-days linear
vesting from time of buyback.

b) or immediate buyback 80% in ETH, value equiva-
lent to the price of nodes snapshot in ETH at time
of purchase. To ensure transparency and security,
Inferix will integrate the Guaranteed Node Buy-
back program into smart contracts and collaborat-
ing with reputable, top-tier third-party auditors.

A portion of the repurchased node licenses will be reassigned
to current active node operators to further boost engagement.
The remaining licenses will be sent to the Inferix treasury, with
possible applications including distributing node operation
rewards to $IFX stakers, reselling nodes, or burning them.

3) Guaranteed Node Buyback Fund: To facilitate the guar-
anteed node buyback, 10,000,000 $IFX will be allocated from
the ecosystem fund, as the Guaranteed Node Buyback Fund.
Node license holders will retain all previously distributed
airdrops, even after participating in the program.

VII. FUTURE DEVELOPMENT

A. PoR and NFT minting for graphics creative assets

During the process of creating their work, graphic artists
frequently engage in rendering activities. The results and
traces generated during rendering on Inferix can be used as
proof of artistic creation. Naturally, PoR combined with native
blockchains can be utilized to mint NFTs that fully capture the
artist’s creative process. In the future, the Inferix ecosystem
could potentially host projects related to this field.

B. ZKP and PoR combination

Zero-knowledge proofs (ZKP) have recently garnered sig-
nificant attention from developers in the Web3 space. At
present, applying ZKP to heavy edge computing systems,
such as GPU-based rendering or AI, faces challenges due to
the high computational resources required, leading to reduced
processing performance. However, the Inferix development
team believes that ZKP will become increasingly valuable for
our use cases in the future. Therefore, we are continuing to
explore experimental approaches that combine ZKP with PoR.
We will publish these experiments in future papers.

C. Inferix Remote PC

In the future, Inferix plans to develop Inferix Remote PC,
a service that allows end-users to directly access Workers via
remote desktop. This will enable users to have greater control
over installing the necessary software on the worker machines,
potentially reducing service costs. For example, if a user has a
license for a render engine that Inferix’s workers do not have,
they can still utilize it with Inferix’s computational hardware
through Inferix Remote PC.

D. Rendering professional network

In its plan to utilize the community grants fund, Inferix has
programs aimed at developing a community of graphic artists
and students from universities related to visual computing.
These initiatives will result in the creation of a rendering
professional network capable of connecting end-users with
professional graphic creators. This will foster sustainable
growth for Inferix.
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APPENDIX A
PROOFS

A. Fourier transform of complex atomic signals

Proof. Substitute the atomic signal eq. (10):

𝑤𝑖 (𝑥, 𝑦) = 𝐴𝑒
2𝑖 𝜋

(
𝑥
𝑋𝑖

+ 𝑦

𝑌𝑖

)
(0 ≤ 𝑥 < 𝑀, 0 ≤ 𝑦 < 𝑁)

into the discrete Fourier transform:

𝐹 (𝑢, 𝑣) = 1
𝑀 × 𝑁

𝑀−1∑︁
𝑥=0

𝑁−1∑︁
𝑦=0

𝑤𝑖 (𝑥, 𝑦)𝑒2𝑖 𝜋( 𝑥𝑢
𝑀

+ 𝑦𝑣

𝑁 )

We have

𝐹 (𝑢, 𝑣) = 𝐴

𝑀 × 𝑁

𝑀−1∑︁
𝑥=0

𝑁−1∑︁
𝑦=0

𝑒
2𝑖 𝜋

(
𝑥
𝑋𝑖

+ 𝑦

𝑌𝑖

)
𝑒2𝑖 𝜋( 𝑥𝑢

𝑀
+ 𝑦𝑣

𝑁 )

Moreover
𝑀−1∑︁
𝑥=0

𝑁−1∑︁
𝑦=0

𝑒
2𝑖 𝜋

(
𝑥
𝑋𝑖

+ 𝑦

𝑌𝑖

)
𝑒2𝑖 𝜋( 𝑥𝑢

𝑀
+ 𝑦𝑣

𝑁 )

=

𝑀−1∑︁
𝑥=0

𝑁−1∑︁
𝑦=0

𝑒
2𝑖 𝜋𝑥

(
1
𝑋𝑖

+ 𝑢
𝑀

)
𝑒

2𝑖 𝜋𝑦
(

1
𝑌𝑖

+ 𝑣
𝑁

)

=

(
𝑀−1∑︁
𝑥=0

𝑒
2𝑖 𝜋𝑥

(
1
𝑋𝑖

+ 𝑢
𝑀

) ) (
𝑁−1∑︁
𝑥=0

𝑒
2𝑖 𝜋𝑥

(
1
𝑌𝑖

+ 𝑣
𝑁

) )
Using geometric sum formulae:

=
1 − 𝑒2𝑖 𝜋𝑀

(
1
𝑋𝑖

+ 𝑢
𝑀

)
1 − 𝑒2𝑖 𝜋

(
1
𝑋𝑖

+ 𝑢
𝑀

) 1 − 𝑒2𝑖 𝜋𝑁
(

1
𝑌𝑖

+ 𝑣
𝑁

)
1 − 𝑒2𝑖 𝜋

(
1
𝑌𝑖

+ 𝑣
𝑁

)
=

1 − 𝑒2𝑖 𝜋 𝑀
𝑋𝑖

+2𝑖 𝜋𝑢

1 − 𝑒2𝑖 𝜋
(

1
𝑋𝑖

+ 𝑢
𝑀

) 1 − 𝑒2𝑖 𝜋 𝑁
𝑌𝑖

+2𝑖 𝜋𝑣

1 − 𝑒2𝑖 𝜋
(

1
𝑌𝑖

+ 𝑣
𝑁

)
=

1 − 𝑒2𝑖 𝜋 𝑀
𝑋𝑖

1 − 𝑒2𝑖 𝜋
(

1
𝑋𝑖

+ 𝑢
𝑀

) 1 − 𝑒2𝑖 𝜋 𝑁
𝑌𝑖

1 − 𝑒2𝑖 𝜋
(

1
𝑌𝑖

+ 𝑣
𝑁

)
Hence:

𝐹 (𝑢, 𝑣) = 𝐴

𝑀 × 𝑁
1 − 𝑒2𝑖 𝜋 𝑀

𝑋𝑖

1 − 𝑒2𝑖 𝜋
(

1
𝑋𝑖

+ 𝑢
𝑀

) 1 − 𝑒2𝑖 𝜋 𝑁
𝑌𝑖

1 − 𝑒2𝑖 𝜋
(

1
𝑌𝑖

+ 𝑣
𝑁

)
□

B. Convergence of energies

Proof. The random variables X𝑖 ,Y𝑖 (𝑖 ∈ N) are independent
then two variables:

X𝑛 =
X1 + . . .X𝑛

𝑛
and Y𝑛 =

Y1 + . . .Y𝑛

𝑛

are independent for all 𝑛 ∈ N. Since X𝑖 (𝑖 ∈ N) are independent
and identically distributed and X𝑖 ∼ N

(
𝜇, 𝜎2)

X𝑛

𝑎.𝑠−−−−→
𝑛→∞

𝜇

by strong law of large numbers; similarly Y𝑛

𝑎.𝑠−−−−→
𝑛→∞

𝜇. Hence

𝑡 [X𝑛 Y𝑛

] 𝑎.𝑠−−−−→
𝑛→∞

𝑡 [X Y
]
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Figure 18: Price simulation details

for some independent and identically distributed variables X ∼
Y ∼ 𝜇. Let us fix some 0 ≤ 𝑢 < 𝑀 and 0 ≤ 𝑣 < 𝑁 , then it is
obvious that the function

𝐹(𝑢,𝑣) ≜ (𝑥, 𝑦) ↦→ 𝐴

𝑀 × 𝑁

(
1 − 𝑒2𝑖 𝜋 𝑀

𝑥

) (
1 − 𝑒2𝑖 𝜋 𝑁

𝑦

)
(
1 − 𝑒2𝑖 𝜋( 1

𝑥
+ 𝑢

𝑀 )
) (

1 − 𝑒2𝑖 𝜋
(

1
𝑦
+ 𝑣

𝑁

) )
is continuous. We define the variable:

F(𝑢,𝑣) : Ω → R2

𝜔 ↦→ 𝐹(𝑢,𝑣) (X (𝜔) ,Y (𝜔))

for some random variables X and Y, then F(𝑢,𝑣) (𝜔) is
nothing but the Fourier transform of the atomic signal whose
the horizontal and the vertical period are X (𝜔) and Y (𝜔)
respectively. Let us consider the sequence

(
F 𝑛
(𝑢,𝑣)

)
𝑛∈N

where:

F 𝑛
(𝑢,𝑣) ≜ 𝜔 ↦→ 𝐹(𝑢,𝑣)

(
X𝑛 (𝜔) ,Y𝑛 (𝜔)

)
By the continuous mapping theorem:

F 𝑛
(𝑢,𝑣)

𝑎.𝑠−−−−→
𝑛→∞

𝜔 ↦→ 𝐹(𝑢,𝑣)
(
X (𝜔) ,Y (𝜔)

)
Since we have proved that X ∼ Y ∼ 𝜇 then the limit of
the sequence is the constant variable 𝐹(𝑢,𝑣) (𝜇, 𝜇). Also, since
𝐹(𝑢,𝑣) is continuous:

|𝐹(𝑢,𝑣)
(
X𝑛,Y𝑛

)
− 𝐹 (𝑢,𝑣) (X𝑛,Y𝑛) | −−−−→

𝑛→∞
0

Hence 𝐹 (𝑢,𝑣) (X𝑛,Y𝑛)
𝑎.𝑠−−−−→

𝑛→∞
𝐹(𝑢,𝑣) (𝜇, 𝜇). □

Remark. The proof does not require that 𝑋𝑖 and 𝑌𝑖 have the
same distribution. Indeed, if 𝑋𝑖 ∼ N (𝜇𝑥 , ·) and 𝑌𝑖 ∼ N

(
𝜇𝑦 , ·

)
then 𝐹 (𝑢,𝑣) (X𝑛,Y𝑛)

𝑎.𝑠−−−−→
𝑛→∞

𝐹(𝑢,𝑣)
(
𝜇𝑥 , 𝜇𝑦

)
.

APPENDIX B
PRICE SIMULATION DETAILS

The table in fig. 18 contains price simulation detailed data.
We are calculating the Provider’s input costs, which include
electricity costs and hardware depreciation. The calculations
are standardized for a single GPU device.

• Electricity cost is calculated based on the power con-
sumption of the device multiplied by the assumed unit

price of $0.20/kW h. Hardware depreciation costs are cal-
culated based on a general assumed depreciation rate of
25% per year for both the GPU and other PC components.

• Provider price: The suggested unit price for Providers is
calculated as double the Provider’s input costs per GPU
per hour.

• The input cost for Inferix is calculated by adding the
storage costs to the Provider price. This storage cost is
based on the assumption that each 3D scene requires 1 GB
of short-term storage for 96 hours and 100 MB of long-
term storage, with a rate of $0.05/GB per month.

• Inferix service price is calculated by adding a 20%
commission for Inferix Foundation to the input cost.

APPENDIX C
HARDWARE REQUIREMENTS FOR NODES

A. Standard manager node

The minimum requirements for a single license for manager
node are as follows:

• 6 x64 Intel®Core™2.1 GHz CPU
• 64 GB RAM
• 1000 GB disk space
• 100 Mbit/s internet connection

B. Secure manager node

The minimum requirements for a single license for secure
manager node are as follows:

• 6 x64 Intel®SGX Core™2.1 GHz CPU
• NVIDIA GeForce RTX3090 GPU
• 64 GB RAM
• 1000 GB disk space
• 100 Mbit/s internet connection

C. Standard verifier node

The minimum requirements for a single license for standard
verifier node are as follows:

• 1 x64 Intel®Core™2.1 GHz CPU
• 8 GB RAM
• 10 GB disk space
• 10 Mbit/s internet connection
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D. Mobile verifier node

The minimum requirements for a single license for mobile
verifier node are as follows:

• Octa-core ARM Cortex®-A55 2.2 GHz or equivalent
• 4 GB RAM
• 10 GB disk space
• 10 Mbit/s internet connection

Remark. Mobile verifier node can be used only for PoR
verification tasks. This type of node cannot run other types
of verification.

E. Secure verifier node

The minimum requirements for a single license for secure
verifier node are as follows:

• 1 x64 Intel®Core™2.1 GHz CPU
• NVIDIA GeForce RTX3090 GPU
• 8 GB RAM
• 10 GB disk space
• 30 Mbit/s internet connection

F. Standard unit node

The hardware requirements for a standard unit node must
be exactly as follows:

• 1x Intel®Core™i9 CPU
• 32 GB RAM
• 20 GB SSD disk space
• 100 Mbit/s internet connection

APPENDIX D
PERFORMANCE EVALUATION DATA

The detailed data for the performance evaluation is given
in tables III to VI hereafter. In any table, each row shows the
execution time (in second) of inserting a vector noise into a
Blender scene whose name is given in the table name, and the
time (also in second) of verifying the distortions regions on a
frame rendered from the scene.

The tests are proceeded on a workstation of Intel®Core™i5
2.5 GHz CPU, 32 GB RAM. The noise insertion and noise
verification do not need GPU.
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Vector length Insertion time Verification time
2 0.747 0.343
5 0.785 0.845
7 0.822 1.059
10 0.871 1.525
12 0.923 1.855
15 0.982 2.352
17 1.061 2.612
19 1.062 2.929
20 1.092 3.081
21 1.094 3.217
23 1.163 3.508
25 1.204 3.786
27 1.241 4.182
29 1.330 4.475
30 1.335 4.673
32 1.394 5.059
35 1.472 5.585
37 1.490 5.982
40 1.612 6.409

Table III: Coca-Cola scheme

Vector length Insertion time Verification time
2 0.920 0.477
5 1.300 1.077
7 1.524 1.412
10 2.085 1.976
12 2.239 2.286
15 2.550 2.722
17 2.865 3.068
19 3.153 3.453
20 3.269 3.527
21 3.439 3.747
23 3.592 4.123
25 3.975 4.546
27 4.279 4.913
29 4.594 5.313
30 4.666 5.557
32 5.087 5.812
35 5.434 6.265
37 5.729 6.654
40 6.229 7.116

Table IV: Grease Pencil Bike scheme
Vector length Insertion time Verification time
2 3.959 0.546
5 7.125 0.922
7 7.468 1.251
10 8.938 1.642
12 9.934 1.871
15 12.773 2.443
17 13.721 2.751
19 14.028 3.083
20 15.351 3.228
21 15.766 3.347
23 17.384 3.717
25 18.587 3.978
27 21.182 4.281
29 21.549 4.523
30 22.224 4.706
32 23.549 5.037
35 27.202 5.444
37 29.063 5.764
40 29.277 6.087

Table V: Blender 3.5 Splash scheme

Vector length Insertion time Verification time
2 2.313 0.657
5 5.012 1.152
7 10.228 1.498
10 15.495 1.997
12 17.667 2.415
15 19.627 2.964
17 23.986 3.311
19 26.091 3.738
20 27.808 3.816
21 28.326 4.080
23 31.014 4.479
25 32.523 4.770
27 34.605 5.151
29 36.062 5.462
30 36.456 5.710
32 38.921 6.031
35 42.441 6.496
37 44.138 6.919
40 49.456 7.458

Table VI: Bathroom Above Corner scheme


	Introduction
	Rendering network using crowdsourced GPU
	Rendering verification problem

	High-level description of ANGV
	Noise generation
	Noise verification
	Threat model

	Implementation of ANGV
	Structure of noise
	Noise insertion
	Geometric constraints
	Distortion region

	Adaptive noise spreading
	Verification key generation
	Noise verification
	Threat analysis
	Attacks on verification keys
	Attacks on noises
	Attacks on verifiers

	Performance evaluation
	Integration

	Decentralized visual computing
	Client Apps plugin
	Client API and SDK
	Manager node
	Worker node
	Decentralized storage
	Data categories
	Multi-level 3D polygon data
	Polygon digester
	Decentralized storage
	Decentralized cache

	Data security with FHE and TEE
	Verifier data security enhancement with FHE
	Worker and Manager data security enhancement with TEE


	Decentralized federated AI
	Federated learning with TensorOpera
	Meta LLaMA
	Stable Diffusion
	Other AI models
	Inferix AI

	Economic model
	GPU compute market for visual computing and federated AI
	Inferix vision
	$IFX Token
	Burn-Mint-Work token issuance model
	Inferix bench and IBME
	IB and IBM
	IBME

	Price simulation
	Token metrics and allocation
	Token allocation
	Token vesting

	Governance
	Node staking and rewards
	Worker
	Verifier
	Manager
	Penalty pool

	Node sale and Guaranteed Node Buyback
	Node sales
	Guaranteed Node Buyback
	Guaranteed Node Buyback Fund


	Future development
	PoR and NFT minting for graphics creative assets
	ZKP and PoR combination
	Inferix Remote PC
	Rendering professional network

	References
	Appendix A: Proofs
	Fourier transform of complex atomic signals
	Convergence of energies

	Appendix B: Price simulation details
	Appendix C: Hardware requirements for nodes
	Standard manager node
	Secure manager node
	Standard verifier node
	Mobile verifier node
	Secure verifier node
	Standard unit node

	Appendix D: Performance evaluation data

